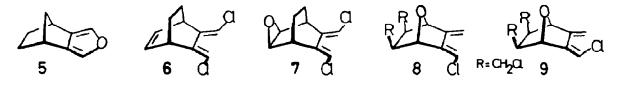
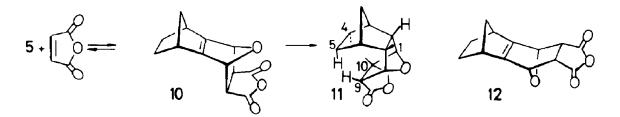
Tetrahedron Letters Vol. 21, pp 3167 - 3170 © Pergamon Press Ltd. 1980. Printed in Great Britain

STEREOSELECTIVITY OF THE DIELS-ALDER ADDITIONS OF EXOCYCLIC DIENES GRAFTED ONTO BICYCLO[2.2.n]ALKANES


Marco Avenati, Jean-Pierre Hagenbuch, Cyril Mahaim and Pierre Vogel Institut de chimie organique de l'Université 2 rue de la Barre, CH 1005 Lausanne/Switzerland

Summary: The stereoselectivity of the Diels-Alder additions of (norborn-2-eno)[c]furan, (E,E)-5,6-bis(chloromethylene)bicyclo[2.2.2]oct-2-ene, (E,E)-5,6-bis(chloromethylene)--exo-2,3-epoxybicyclo[2.2.2]octane, (E)- and (2)-2-chloromethylene-3-methylene-exo--5,6-bis(chloromethyl)-7-oxanorbornanes is presented.

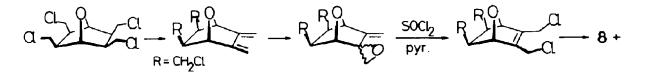

Paquette et al.¹ have reported recently on the stereoselectivity of the Diels-Alder additions of the cyclopentadienes <u>1</u> - <u>3</u>. The selectivities were attributed to a kinetic stereoelectronic control. We feel that other factors cannot be ruled out yet; e.g.: the stereoselectivity could be governed by the stability of the isomeric adducts (i.e. the Bell-Evans-Polanyi principle would be followed²). We report on the cycloaddition of the furan <u>5</u> and present a case where

the apparent kinetic product is also the most stable isomeric adduct. We show that tetracyanoethylene (TCE) adds to the dichlorodienes <u>6</u> and <u>7</u> preferentially onto their *endo* face (*syn* to C(2,3)), in apparent contrast with the "*exo*" stereoselectivity reported for the cycloadditions of $\underline{3}^1$. TCE adds to the chlorodienes <u>8</u> and <u>9</u> with "*exo*" stereoselectivity (the first case where the stereoselectivity is proven not to be controlled by the stability of the products).

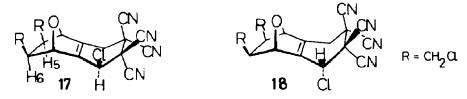
The furan 5^3 added to maleic anhydride at - 60° in acetone and gave the adduct 10^4 as the sole observable product. The same compound was formed at higher temperatures (up to 120° in diphenyl ether). At 21° , 10 equilibrated with the cycloaddends (K = 22 Lmol^{-1}). After prolongec heating at 40° , 80° or 120° , no other product could be detected (by ¹H-, ¹³C-NMR, tlc, hplc; < 2 %), thus suggesting that <u>10</u> is the product of thermodynamic control. It might also be the

product of kinetic control. The non-observation of the isomeric adduct 12 in the above equilibrium conditions is surprising. It suggests that 12 is at least 2 Kcalmol⁻¹ less stable than 10^5 . The structure of 10 was deduced from its spectral data⁴ and by catalytic hydrogenation (Pd/C, acetone, - 30°) into 11 whose configuration was given unambigously by the ${}^3J_{\rm H,H}$ coupling constants between the bridgehead and vicinal hydrogens⁷ and a NOE of ca. 27 % on E(9,10) by irradiating H(4,5).

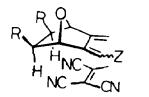
The (E,E)-dichlorodienes $\underline{6}$ and $\underline{7}$ were prepared according to the following scheme⁸:


$$() + ()$$

The (E,E) configuration of the chlorine substituents was expected from the mode of formation of <u>6</u> and <u>7</u>. It was confirmed by the shape of the carbon NMR signals of C(5,6) (cis ${}^{3}J_{C,H} < trane {}^{3}J_{C,H}^{9}$) and by comparison with the spectra of the chlorodienes <u>8</u> and <u>9</u> (see thereafter).



The triene 6^{10} added to TCE (20° , 24h, $C_{6}H_{6}$) and yielded a $80^{\pm}2:20^{\pm}2$ mixture (95 %) of the adducts <u>13/14</u>. Similarly, <u>7</u>¹⁰ added to TCE (20° , 24 h. $C_{6}H_{6}$) and gave a $75^{\pm}2:25^{\pm}2$ mixture of <u>15/16</u> (95 %). The major adducts <u>13</u> and <u>15</u> correspond to a dienophile attack onto the *endo* face of the dienes <u>6</u> and <u>7</u>, respectively. <u>13</u> and <u>15</u> could be purified by fractional crystallization. The configuration of <u>13</u> - <u>16</u> was given by NOE measured on the chloromethylene hydrogens while irradiating the ethano bridge protons (FT-¹H-NMR(360 MHz), by substracting the non-irradiated spectra from the irradiated ones of 1:1 mixtures of <u>13/14</u> and <u>15/16</u>). It is interesting to note that both the endocyclic double bond and the *exc*-epoxide ring have the same orienting effect. One could be tempted to draw a parallelism between this stereochemical effect and the rate retardation effect on the Diels-Alder reactivity introduced by these functions onto homoconjugated exocyclic dienes¹¹. The "*endo*" stereoselectivity of <u>6</u> + TCE contrasts with the "*exo*"


The chlorodienes $\underline{8}$ and $\underline{9}$ were prepared according to the following scheme⁸; they were separated by vapour phase chromatography.

The configuration of the chlorodienes was deduced from the spectral data¹² (sum of ${}^{3}J_{C,H}$ and ${}^{2}J_{C,H}$ of C(3) was larger in 9 than in 89 and by radical induced isomerization (I₂, C₆H₅C 130°) of the (Z)-chlorodiene 9 into its more stable (E)-isomer 8. The latter added slowly to TCE at 65° in C₆H₅Cl and gave a 85[±]2:15[±]2 mixture of the adducts <u>17/18</u> (90 %). The less stabl diene 9 was ca. 650 times less reactive than 8 toward TCE (probably because of deformations o the diene due to the C-H...Cl-C repulsive interactions; cf. UV spectra of 8 and 9¹² and cf.¹³ At 130° (C₆H₅Cl) 9 yielded a 20[±]2:80[±]2 mixture of <u>17/18</u>. These products were stable under the conditions of their formation. Their structure was given by their spectral data¹². A NOE of c 20 % was recorded on the chloromethylene hydrogens of <u>17</u> while irradiating the H(5,6) protons (no such effect for <u>18</u>). Thus, in contrast with the "endo" stereoselectivity observed for the cycloadditions of 1^{1,14}, the TCE prefers to attack onto the *exc* face of 8 and 9¹⁵. The two latter reactions represent the first case of a Diels-Alder addition of exocyclic dienes graft onto a bicyclic skeleton whose stereoselectivity is shown not to be controlled by the stabili of the isomeric adducts.

Among several possible explanations, one can invoke a steric hindrance between the cycloa dends in the transition state that retards the "endo" attack (such an hypothesis does not ho for $\underline{7}$ + TCE) or/and formation of a charge-transfer complex implying the participation of the n(0) electrons of the oxygen bridge, thus favoring the "exo" attack. More data must be collec before adventuring into a general theory¹ of the observed stereoselectivities¹⁶.

Accrowledgments. We are grateful to Hoffmann-La Roche and Co., Basel, to the "Swiss National Science Foundation" (FN 2.891.0.77) and to "Fonds Herbette", Lausanne, for generous support.

References and Notes

- 1. L.A. Paquette, R.V.C. Carr, M.C. Böhm & R.Gleiter, J.Amer.Chem. Soc. 102, 1186 (1980).
- M.J.S. Dewar & R.C. Dougherty, "The PMC Theory of Organic Chemistry", Plenum Press, New York, 1975, p. 212.
- 3. J.P.Hagenbuch & P. Vogel, Tetrahedron Lett. 1979, 561.
- 4. Characteristics of 10 : m.p. 115-7°; $\delta_{H}(CDCl_{3})$: 0.73 (ddd, 12.0, 5.0 & 2.4 Hz, 2H), 1.31 (md, 9.0 & 1.6 Hz, 1H), 1.58 1.97 (m, 3H), 2.89 (s, 2H), 3.2 (m, 2H), 5.37 (s, 2H); IR(KBr) : 3000, 1870, 1830, 1790, cm⁻¹; m/z : 232(2), 187(3), 135(11), 134(100); 11 : m.p. 157-8°, $\delta_{H}(CDCl_{3})$: 1.57 - 1.87 (m, 6H), 2.47 (m, 2H), 2.67 (m,2H), 3.9 (s, 2H), 4.85 (dd, 2.2 & 2.7 Hz, 2H); IR(KBr) : 2980, 1870, 1835, 1785 cm⁻¹; m/z : 234(1), 206(5), 133(21), 66(100).
- 5. The cause of the enhanced stability of 10 relative to that of 12 is not clear yet. It might be due to the π -polarization of the endocyclic double bond toward the exo faces of the 2-norbornene and 7-oxanorbornene systems or/and to electrostatic binding interactions between the H₂C and oxygen bridges.
- A.A. Pinkerton, P.A. Carrupt, P. Vogel, T. Boschi, N.H. Thuy & R. Roulet, Inorg. Chim. Acta 28, 123 (1978); S. Inagaki, H. Fujimoto & K. Fukui, J. Amer. Chem. Soc. <u>98</u>, 4054 (1978).
- 7. A. Chollet, J.P. Hagenbuch & P. Vogel, Helv. Chim. Acta <u>62</u>, 511 (1379) and ref. therein;
 H. Joela, Org. Magn. Reson. 9, 338 (1977).
- 8. Details on these reactions and products will be given in a full paper.
- 9. A.W. Douglas, Crg. Magn. Reson. 9, 69 (1977); U. Vögeli & W. von Philipsborn, ibid. 7, 617 (1975).
- 10. Characteristics of <u>6</u> : $\delta_{H}(\text{CDCl}_{3})$: 1.0 2.0 (m, 4H), 4.0(m, 2H), 6.1 (s, 2H), 6.3(m, 2H); $\delta_{c}(\text{CDCl}_{3})$: 23.7(t, 134), 34.9(d, 141), 107.1(d, 194), 133.0(d, 170), 140.2(br.s); 1R(film) : 3070, 2940, 2880, 1630, 780, 750 cm⁻¹; m/z : 204(3), 202(18), 200(27), 176(10), 174(70), 172(100); $\lambda_{max}(\text{EtOH})$: 261 nm(ε , 11 000).

7: liq.; $\delta_{\text{H}}(\text{CDCl}_3)$: 1.25 (m, 2H), 1.9(m, 2H), 3.25(m, 2H), 3.7(m, 2H), 6.45(s, 2H); $\delta_{\text{(CDCl}_3)}$: 2I.9(t,134), 33.3(d, 141), 51.7(d, 188), 110.9(d, 194), 138.7(br.s); IR(film)^C: 3080, 3020, 2980, 2950, 2910, 2870, 1670, 1950, 1460, 1405, 850, 790, 750; m/z : 220(9), 218(37), 216(58), 183(4), 181(15), 115(100); $\lambda_{\text{max}}(\text{EtOH})$: 260 nm(ϵ ,10100).

 $\frac{13}{18}$: m.p. 182-3°; δ_{H} (CDC1₂): 1.45(*m*, 2H), 1.55(*m*, 2H), 3.8(*m*, 2H), 5.2(*s*, 2H), 6.5(*m*, 2H); TR(KBr): 3080, 3000, 2960, 2940, 2900, 2880, 2260, 1660, 1610, 1470, 810, 765 cm⁻¹.

15 : m.p. 246-7°(dec.); δ_{μ} (CDCl₃) : 1.0 - 1.5(*m*, 2H), 2.0 - 2.25(*m*, 2H), 3.5(*m*, 4H), 5.25(*s*, 2H); IR(KBr) : 3050, 3000, 2960, 2940, 2920, 2880, 2260, 1470, 1415, 1290, 855, 800 cm⁻¹.

- O. Pilet, A. Chollet & P. Vogel, Helv. Chim. Acta <u>62</u>, 2341 (1979); M. Hardy, P.A. Carrupt & P. Vogel, *ibid.* <u>59</u>, 1685 (1976).
- 12. Characteristics of $\underline{8}$: m.p. $62-3^{\circ}$; $\delta_{\mu}(CD_{2}COCD_{3})$: 2.5(m, 2H), 3.75(m, 4H), 4.95(br.s, 1H), 5.18(s, 1H), 5.25(br.s, 1H), 5.4(s, TH), 6.7('); λ_{max} (hexane): 250 nm(ε , 10000). 9: m.p. 83-4°; $\delta_{\mu}(CD_{2}COCD_{3})$: 2.55(m, 2H), 3.75(m, 4H), 4.9(br.s, 1H), 4.95(br.s, 1H), 5.48(s, 1H), 6.0(s, 1H), 6.6(s, 1H); λ_{max} (hexane): 245 nm(ε , 9000). 17: m.p.: 212-2°; $\delta_{\mu}(CDC1_{3})$: 2.18(m, 2H), 3.25(m, 1H), 3.24(m, 1H), 3.55(m, 1H), 3.58(m, 1H), 3.5 & 3.7(2m, 4H), 5.09(br.s, 1H), 5.14(dd, 1H), 5.17(br.s, 1H). 18: $\delta_{\mu}(CDC1_{3})$: 2.26(m, 1H), 2.52(m, 1H), 3.4 & 3.7(2m, 4H), 5.03(br.s, 1H), 5.22(br.s, 1H), 5.42(m, 1H).
- 13. C. Rücker, D. Lang, J. Sauer, H. Friege & R. Sustmann, Chem. Ber. 113, 1663 (1980).
- 14. T. Sugimoto, Y. Kobuke & J. Furukawa, J. Org. Chemistry, <u>41</u>, 1457 (1976).
- 15. The stereoselectivity of 9 + TCE was not exactly the reverse of that of 8 + TCE because of the different temperatures at which these reactions were carried out.
- 16. All the new compounds presented here gave satisfactory elemental analysis.

(Received in Germany 2 June 1980)