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Swmary: The stereoselectft’ity of the Lkzels-Alder aakiitions c o, (norborn-Z-em) lcJjiuw~, 
lE, EI-5,6-bis(chZoromethyZenelbicycZoI 2,2,2]oct-2-ene, (E,EB)-5,6_bis(chI~romethyLae)- 
-ezo-2,3-epoxybicrjcZo L2.2.2 Joctane, (EI- and (ZJ-2-chZoro~ethylene-d-mettrdZene-ex~ 
-5,6-bis(chloraethylI-7-~~~bornrmes is presented. 

Paquette et al.' have reported recently on the stereoselectivity of the Diels-Alder addi- 

tions of the cyclopentadienes 1 - 3. The selectivities were attributed to a kinetic stereoelec- - - 
tronic control. We feel that other factors cannot be ruled out yet; e.g.: the stereoselectivitj 

could be governed by the stability of the isomeric adducts (i.e. the Bell-Evans-Palanyi princi- 

ple would be followed'). We report on the cycloaddition of the furan 5 and present a case where 

the apparent kinetic product is also the m>st stable isomeric adduct. We show that tetracyano- 

ethylene (TCE) adds to the dichlorodienes 6 and 7 preferentially onto their endo face (syn to - - 

C(2.3)), in apparent contrast with the "em,, stereoselectivity reported for the cycloadditions 

of 3'. - TCE adds to the chlorodienes 8 and 9 with "ejco* stereoselectivity (the first case where - 

the stereoselectivity is proven not to be controlled by the stability of the products). 

The fur-an z3 added to maleic anhydride at - 60' in acetone and gave the adduct ?04 as the - 
sole observable product. The same compound was formed at higher temperatures (up to 120' in 

diphenyl ether). At 21°, 10 equilibrated with the cycloaddends (K = 22 Lmol-'). After prolonger 

heating at 40°, 80' or 120°, no other product could be detected (by 'H-, 13C-NMR, tic, hplc; 

< 2 %), thus suggesting that 10 is the product of thenodynamic control. It might also be the - 
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product of kinetic control. The non-observation of the isomeric adduct 12 in the above equili- - 
brium conditions is surprising. It suggests that 12 is at least 2 Kcalmol-1 less stable than - * 
l& The structure of 10 was deduced 

.(Pd/C, acetone, -I - 30') into 11 whose - 
constants between the bridgehead and 

irradiating H(4.5). 

The (E,E)-dichlorodienes 6 and 7 

from its spectral data' and by catalytic hydrogenation 

configuration was given unambigously by the 3JH h coup1 ing 

vicinal hydrogens7 and a NOE of ca. 27 % on 1:(9:10) by 

were prepared according to the following scheme': 

The (E,E) configuration of the chlorine substituents was expected from the mode of formation 

of 6 and 1. It was confirmed by the shape of the carbon NMR signals of C(5,6) (cis 3JC h < 

tram 3JC Hg 
) and by comparison with the spectra of the chlorodienes 8 and 2 (see theriafter). 

l 

The triene 5" added to TCE (20°, 24h. C H ) and yielded a 80f2:20f2 mixture (95 %) of the 

adducts 13/14. Similarly, 7 lo added to TCE (iOg , -- - 24 h. C6H6) and gave a 75‘f2:25+2 mixture of 

15/16 (95 Z). The major adducts 13 and 15 correspond to a dienophile attack onto the s&o face - - 

of the dienes 6 and 7, respectively. 13 and 15 could be purified by fractional crystallization. - - - - 

The configuration of 13 - 16 was given by NOE measured on the chloromethylene hydrogens while -_ 

irradiating the ethano bridge protons (FT-1H-NMR(360 MHz), by substracting the non-irradiated 

spectra from the irradiated ones of 1:l mixtures of 13/14 and 15/E). It is interesting to note 

that both the endocyclic double bond and the ozc-epoxide ring have the same orienting effect. 

One could be tempted to draw a parallelism between this stereochemical effect and the rate 

retardation effect on the Oiels-Alder reactivity introduced by these functions onto homoconju- 
11 

gated exocyclic dienes . The 'r~,nd~'r stereoselectivity of 6 t TCE contrasts with the '&off - 

stereoselectivity reported for the cycloadditions of 3l. _ 



The chlorodienes 8 and 9 were prepared according to the following scheme*; - they were 

separated by vapour phase chromatography. 

R=CH2Ct 

The configuration of the chlorodienes was 
2 

and_ JC,H 
of C(3) was larger in 2 than in 6') - 

deduced from the spectral data12 (sum of 
3 
JC H 

and by radical induced isomerization (12, C,i,C 

130') of the (Z)-chlorodfene 2 into its more stable (E)-isomer 5. The latter added slowly to 

TCE at 65' in C6H5C1 and gave a 85+2:15+2 mixture of the adducts 17/18 (90 %). The less stab1 -- 
diene 9 was ca. 650 times less reactive than 8 toward TCE (probably because of deformations o - 
the diene due to the C-H . . .Cl-C repulsive interactions; cf. UV spectra of 8 and 912 and cf.13 - - 
At 130' (C6H5C1) 9 yielded a 2$2:80+2 mixture of 17/18. These products were stable under the _ -- 
conditions of their formation. Their structure was given by their spectral data '? A NOE of c 

20 X was recorded on the chloromethylene hydrogens of 17 while irradiating the H(5,6) protons -.. 
(no such effect for 18). Thus, 

cycloadditions of 11,14, 

in contrast with the "en&" stereoselectivity observed for the 

the TCE prefers to attack onto the exe face of 8 and 915. The two - - 
latter reactions represent the 

onto a bicyclic skeleton whose 

of the isomeric adducts. 

first case of a Diels-Alder addition of exocycllc dienes graft 

stereoselectivity is shown not to hc controlled by the stahili 

Among several possible explanations, one can invoke a steric hindrance between the cycloa 

dends in the transition state that retards the '%rzdo" attack ( such an hypothesis does not ho 

for L + TCE) or/and formation of a charge-transfer complex implying the participation of the 

n(0) electrons of the oxygen bridge, thus favoring the %XO" attack. More data must be collec 

before adventuring into a general theory' of the observed stereoselectivities 16 . 
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